
Test Means at Airbus Defence and Space,

Military Aircraft business line

Making Ada the Heart of an All-

Encompassing Aircraft Test Life-Cycle

Industrial Presentation, Ada in Aerospace Session

Ada Europe 2014, Paris

Javier Arroyo

Test Systems

24 June 2014

A/C Electronics Systems Development Life Cycle

TEST Means: HW/SW facilities to support A/C

equipment, subsystem or system

validation and verification processes

across product life-cycle

Test Means Architecture

FWS ACMSCDS

PC SESAME 3

EDP

APU

APU

PC SESAME 4

ICP
PC SEAS CLIENT 1 PC SEAS CLIENT 2

HMIICPABD
LOADS RACK

POWER

DISTRIBUTION

A/C HARDWARE

INTERFACE LOADS

START-GEN

A/C HARDWARE

INTERFACE LOADS

STATOR

SPU

28VDC POWER SUPPLY 2

28VDC POWER SUPPLY 3

SOCKET STRIP

POWER DISTRIBUTION

FIBO 2

SGCU

PMG POWER

SUPPLY

VF POWER SUPPLY

POR POWER SUPPLY

FIBO RACK 2 FIBO RACK 1

POWER

DISTRIBUTION

FIBO 1

ECB + DMM

CRDC

AIR INTAKE FLAP

ACTUATOR

SEAS RACK

AC POWER

CONTROL

POWER

DISTRIBUTION

28VDC PWR SUPPLY PS1

PDU (POWER DISTRIBUTION UNIT)

VME CHASSIS

CABLE DUCTING

AFDX/ETHERNET SWITCH

PC EXPANSION SEAS

PC SESAME 1

PC ABD TOOL

SESAME & ABD RACK

PC SEAS CLIENT 3

PC SESAME 2

SOCKET STRIP

SYSTEM CONSOLE

POWER DISTRIBUTION

CABLE DUCTING

AUTOMATIC FIBO

MATRIX

SYSTEM INTEGRATION BENCHES

FAL TEST SYSTEM

Remarkable capabilities

• Common Aircraft Interface
Core Module

• Manual and automatic aircraft
interfaces

• Specific User Interface

Test Facilities

A common solution applied over and over again to satisfy different needs

•The maturity, robustness and reliability of the system have been demonstrated throughout hundreds of test facilities in use with
this common test environment, including Engineering Simulators for Aircraft Refuelling Boom System, System Integration
Benches for Multirole Tanker Aircrafts, A400M, Light & Medium Transport Aircraft, Full Integrated Tactical Systems and Aircraft
Interface Modules for Final Assembly Lines of A400M, Multirole Tanker Aircrafts and L&MT aircrafts.

•Proven with up to 400.000 signals per system integration bench

Construction Operation

Test Means Building and Operation using HW/SW bricks portfolio

SEAS Framework

SEAS: The Orchestra Conductor

SEAS Framework

Open and Modular Framework

Use of COTS components

Mapping all interfaces as Test Item Objects

Integration of Definition and analysis tools

Automatic Translation from high level Test
requirements

SEAS Overview

Stimulation, Acquisition and Simulation System (SEAS)

 SEAS is a modular, generic, distributed set of HW/SW items used to build test facilities
(Engineering Simulator, SW Benches, Functional Test Benches and Target Rigs)

SYSTEM

UNDER TEST

+
Instruments

MONITORIZED DATA ACQUISITION

SENSORS DATA

STIMULATION

TEST

SYSTEM

TEST BENCH

SEAS Features

• Modular, open, distributed and scalable architecture widely used with minimal

 changes from desktop simulators to target rigs

• Key features: Configurability, Portability, Interoperability, Reusability, Scalability,

 Reliability and Maintainability

• Generic SW components are written in Ada 95 / Ada 2005

• SEAS Core SW: class-wide programming for Processes, Signals, HW Interfaces,

 Scaling, Processors, Testing Equipment …

• “Factory Pattern”: deployment of distributed objects from the Central Objects Factory

• The backbone used to articulate components integration is based on two middleware

solutions:

• AdaCore GLADE / PolyORB with Ada DSA personality

• SEASCOM (proprietary) network application protocol

• Thanks to the capability to flexibly exchange simulation models with real hardware

SEAS can support the whole development lifecycle

SEAS Features (II)

• Simulation environment: multi-platform, multi-OS running in heterogeneous machines

• Multi-language support for simulations and bench specific SW

 (Ada, C, C++, Java, VB, FORTRAN, NI-LABVIEW, PYTHON...)

• HW access employs a flexible mechanism which makes it possible to connect it to

internal variables belonging to a model, following the “Layer Pattern” where the
connecting layer code is automatically generated

• Integration with COTS (commercial off-the-shelf) products:

• industrial test tools by means flexible adapters

• avionics and non-avionics I/F cards (A429, AFDX, 1553, EFEX, CAN, Analogue,

 Digital, Discrete, Ethernet, Shared Memory, High Speed data links)

• HMI tools (GtkAda,VI, process control…)
• multimedia products for realistic outside world 3D simulation

A Test System built around AdaCore GNAT Pro Toolsuite

Our software development process is based on the AdaCore GNAT Pro Toolsuite. Its

comprehensive set of tools include all the elements necessary to produce our test solution,

including key features like support for distributed applications and multi-language integration:

• GNAT Pro’s Integrated Development Environment (GPS)

• GNAT Pro Ada Compiler (Ada 2012/2005/95/83)

• GPRbuild

• GLADE, PolyORB/DSA: Ada Distributed Systems Annex for

 shared memories, RPC, data, types and objects distribution

• GPS Visual Debugger

• GNAT Libraries and Bindings (POSIX API, Win32 API, …)
• GtkAda for HMI and for special synoptic like mission scenarios, radar display simulations

• XML/Ada Pro XML processing library (supporting XML, SAX, DOM) for test system

 definitions, bench HW/SW definition

S
E

A
S

 A
rc

h
ite

c
tu

re

DATAVIS

Master-HMI

Trend displ.

Numeric disp

Automatic test

User Defined
User Defined

T
U

I

Synoptic
Synoptics

R
T

I

R
T

S
IG

…
.

IO
 B

U
S

IO
 C

ard

IO
 C

ard

..

Node Server

Simulation
Simulation ..

Signal process

P
ro

cesso
r 1

Simulation

Simulation
Recording ..

Signal process

P
ro

cesso
r n

S
E

A
S

U
s
e

rs
 s

ta
tio

n
s

 U
s
e
r In

te
rfa

c
e
 S

u
b

s
y
s

C
o
re

 P
ro

c
e
s
s
in

g
 s

u
b
s
y
s
te

m

S
p

e
c
ific

R
T

I

Process Executer

Process Executer

Process Executer
Main processor

Secondary processor

Simulation

Simulation

Recording

SEAS-node server

Process Executer

Simulation

Simulation

Recording

Sequence

Registering

Serializing

Master Sched.

Master Sched.

I/O

BUS

&

RTI

Signal Process Management

Process Executer
Main processor

Client Node

Simulation

SEAS-node server

Simulation

Recording

Sequence

Registering

Serializing

Master Sched.

I/O

BUS

&

RTI

SEASCOM Interface

Connect Start_Sequence Start_Simulation Start_Recording Disconnect

Custom

Test Application
(Ada, C++, Java…)

Standard Socket Connection

with Proprietary Protocol

SEASCOM

client library

SEASCOM Interface (II)

SEAS Simulation

SIMULATION

CORE
(Ada, C, C++, C#, VB)

Control Signals Interface
Scheduler

Environment

Simulation Developers

Domain

Simulation Integrator

Domain

SEAS

Domain

Simulation Interface

SIMULATION

Variables

Get_values Put_values

Automatically
generated by
SEAS user API
for Ada or C

IO API’s SEAS RTPI lib

Dynamically:

• receives required
signals and HW
interface objects
serialized from
server during
simulation
initialisation

• adds new signals to
server

• creates ‘Bundle
Signals’

SEAS Simulations Layers

The “Layer
Pattern” allows
to switch
between
accessing real
HW directly and
using virtual I/O
with no changes
or effect on the
simulation

Simulations Build

Matlab/Simulink model

Ada Simulation

C Simulation

FORTRAN Simulation

Binary Code SEAS

SEAS Simulation

VILabview/ SL-GMS....

Simulation ICD

Bench ICD

AP2633 Model

Simulations Build (II)

SEAS Simulations Build (II)

Bench

signals

The SEAS user API gives the user the capability to associate Bench signals

with simulation variables
Simulation

variables

Main procedure, it
instantiates a Simulation
process class

Signal_Process.Simulation

It implements the simulation process
class

Simulation Process (spec and body)

It is a skeleton for the user to
implement the simulation functionality
(INIT, EXEC and STOP)

Interface files

It provides signals and IFUs-HW objects

pointers to perform direct IO access to
HW interfaces.

Object copies are serialized from server
process by using Ada Distributed
Systems Annex (PolyORB)

It implements Get_Values and
Put_Values functions

Simulations have capability to call
directly any HW interfaces API’s
functions for specific board handling

Binding package to COTS API´s
given in C or C++

SEAS Simulation IDE

SEAS connected to

native IDE for
simulations and
specific test tools

For Ada and C Code,
generating a GPS
project and launching

GPS

… Or for Visual C
source code,
generating a Visual C
project and launching
Visual Studio
Application

Tools Integration: Matlab Simulink models to SEAS Route
ARBS application

Tools Integration: Integration with realistic 3D modelling tools

A real FMS guiding a virtual aircraft on autopilot,

receiving inputs from a number of coordinated

simulations exchanging signals in real time.

Beyond the fancy rendering, there is SEAS under

the bonnet.

Summary

• Our testing solution, SEAS, makes extensive use of Ada with the goal of providing a

comprehensive solution to most testing needs throughout the development life cycle of

aircraft on-board electronics equipment at Airbus Defence and Space, Military Aircraft

• Test System built around AdaCore GNAT Pro Toolsuite

• Ada 95 / 2005 for SEAS Core SW using class wide programming

• Ada 95 / 2005 for simulations, possibly in combination with many other languages

• GtkAda for HMI, among other solutions

• XML / Ada for data file processing

• Ada Distributed Systems Annex for shared memories, RPC, data, types and objects

distribution

• Patterns: “Factory Pattern”, “Central Objects Factory”, “Layer Pattern”

• Future developments aimed at widening the scope of interoperability with third-party

products by means of open, standard protocols

Thank you for your attention

Support slides

SEAS Context Diagram

Systems Engineering Domains

Test System

Test Requirements ICD Models

HW Interface

Test Sessions

Configuration Items

Databases

Test Preparation
Management

Master HMI

Test Execution
Management

Test Analysis
Management

User subsystem

Test Engine

Core Processing subsystem

Test Equipments

CMS
Conf. & Dict & Data

Server

Simulation
Environment

Recording
Replay

Sequencer

Environment

Equipment / Subsystem / System

Under Test

A/C ICD’s Management

DOORS

Signal
Definition

DB

Smarty

XSLT-FO

Rigs /Test benches

Reports

Legacy ICDs

Templates

Rig/Bench

 Config data

Excel

SEAS Signal Class Diagram

SEAS Signal Class Diagram (II)

SEAS Simulation Class and Activity Diagram

Simulation_main

+Process_control()

+Add_Control_Signals_To_Process()

+Read_Details()

+Get_Process_Signals()

-SP_Sim : object

Signal_Process-Simulation

+Init_Interf()

+Get_Values()

+Put_Values()

+Control Signals variables

+Functional Signals variables

Simulation_Interf

+INIT()

+EXEC()

+STOP()

Simulation_Process

Signal_Process

Input parameters:

- Simulation name

- Test name

Simulation_ProcessSignal_Process-

simulation

Simulation_main

Create Log File

Connect to Cards

Add control signals to Process

Process Control

CTRL signals added

INIT

EXEC

STOP

Free Resources

SIMULATION.CONTROL

= Init = Run = End

PolyORB

Middleware implementation providing development tools and an innovative runtime library architecture for

collaboration of application components using open standards for distributed systems.

PolyORB is a middleware toolset that provides distribution services through standard programming interfaces (e.g.

CORBA, the Ada Distributed Systems Annex, or the MOMA messaging API) and communication protocols (e.g.

GIOP and SOAP). It addresses distribution model interoperability issues by allowing a single middleware instance

to efficiently support multiple personalities executing simultaneously. Its modular architecture emphasizing code

reuse allows the definition and deployment of middleware configurations that are specially adapted for real-time,

high integrity applications.

Ada Distributed Systems Annex (DSA)

The Ada Distributed Systems Annex allows easy creation and deployment of distributed applications using

standard language features. The construction of a distributed application is facilitated by leveraging on existing Ada

constructs to identify distributed component boundaries and interfaces. Applications can be written as though not

distributed, and later on partitioned into multiple subsets assigned to distinct nodes, and communicating through

remote subprogram calls and shared data.

The PolyORB/DSA implementation includes:

• a distribution stubs generator, included in the GNAT Pro compiler;

• GNATDIST: a partitioning tool allowing the generation of executable images for each partition in a DSA

distributed application

• a PCS (Partition Communication Subsystem) implemented as personality modules within the PolyORB

framework, providing runtime communication services and distribution support to application components.

